
 

  Vol. 13, No. 1, Juli 2025 

 

 

                                              ISSN  0216 – 0544 

e-ISSN 2301– 6914 

 

24 

 

 
 

   

 

 

 

  
 

 

 

 

          

 

  

 

 

INTRODUCTION 

Acute Lymphoblastic Leukemia (ALL) is a 

life-threatening blood cancer characterized by 

the abnormal proliferation of immature 

lymphoid cells in bone marrow, blood, and 

other organs [1]. ALL develops very quickly 

and requires early detection for effective 

treatment, as delayed diagnosis can lead to 

rapid disease progression and reduced survival 

rates. The disease particularly affects adults 

over 50 years and children under five years who 

are in the higher-risk group [2] [3]. 

Traditional diagnosis of ALL relies heavily 

on manual microscopic examination of blood 

smears by expert hematologists. However, this 

manual detection process faces several 

significant challenges. First, it is time-

consuming and labor-intensive, requiring 

specialized expertise that may not be readily 

available in all healthcare settings. Second, the 

process is prone to inter-observer variability 
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Abstract

Acute Lymphoblastic Leukemia (ALL) is a type of blood cancer that requires early and 
accurate  detection  for  effective  treatment.  Current  diagnostic  approaches  face 
significant  challenges  including  time-consuming  manual  examination,  inter-observer

variability,  and  difficulty  in  balancing  sensitivity  with  specificity.  This  study  aims  to 
develop and compare two automated ALL detection methodologies to overcome these 
limitations.  We  propose:  (1)  a  Random  Forest  classifier  using  carefully  engineered 
morphological and textural features, and (2) a Convolutional Neural Network (CNN)

architecture for automated feature learning from microscopic blood cell images. Using 
10,661  images  from  the  ALL  Challenge  dataset,  we  evaluated  both  approaches  on 
training  (70%),  validation  (15%),  and  test  (15%)  sets.  Feature  importance  analysis 
revealed  cell  area  (10.71%),  energy  (10.67%),  and  skewness  (10.50%)  as  the  most

significant  discriminative  features.  The  Random  Forest  achieved  85%  accuracy  with

notable  sensitivity  for  ALL  detection  (93%),  while  the  deep  learning  approach

demonstrated superior performance with 87% accuracy and better false positive control

(27.50%  vs.  35.76%).  Our  comparative  analysis  shows  that  while  both  methods

demonstrate clinical viability for automated ALL  screening, the deep learning approach

offers  advantages  in  reducing  false  positives  while  maintaining  high  detection

sensitivity. This  research  contributes  to  the  advancement  of  computer-aided

diagnostic  tools  that  can  support  pathologists  in  early  ALL  detection,

potentially  reducing

diagnostic time and improving consistency.

Key  words:  Acute  lymphoblastic  leukemia,  Deep  learning,  Medical  image  analysis,

Morphological features,  Random forest.
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due to the subjective nature of visual 

assessment. Third, the complex nature of blood 

cells, presence of noise, weak edges, intensity 

inhomogeneity, and cell overlapping make 

consistent and accurate manual detection 

difficult [4] [5]. These factors collectively 

contribute to potential diagnostic delays and 

inconsistencies that can impact patient 

outcomes. 

Computer-aided diagnostic systems have 

emerged as potential solutions to address these 

limitations. However, developing effective 

automated systems for ALL detection presents 

its own set of challenges. Current automated 

approaches struggle with: (1) accurately 

distinguishing between immature leukemic 

blasts and normal lymphocytes due to their 

morphological similarities; (2) handling the 

high variability in cell appearance caused by 

staining variations and imaging conditions; (3) 

balancing sensitivity and specificity to 

minimize both false negatives that could lead to 

missed diagnoses and false positives that might 

result in unnecessary further testing. 

In the context of ALL diagnosis, 

morphological and textural features play a 

crucial role as they directly represent the 

physical and structural characteristics that 

hematologists use for identification. Leukemic 

lymphoblasts typically exhibit distinct 

morphological patterns, including larger cell 

size, irregular nuclear shapes, and abnormal 

chromatin patterns compared to normal 

lymphocytes. The systematic extraction of 

these features is essential because it provides 

quantifiable metrics for cell characteristics that 

experts traditionally assess qualitatively. 

Features such as cell area, perimeter, 

circularity, and nuclear-to-cytoplasmic ratio 

can effectively capture the subtle differences 

between normal and leukemic cells. 

Additionally, textural features derived from 

techniques like Gray Level Co-occurrence 

Matrix (GLCM) can quantify the internal 

patterns and chromatin distribution that are key 

indicators of cell abnormality [6]. 

Machine learning approaches for ALL 

detection have evolved over time. Earlier 

methods focused on carefully engineered 

features to capture distinctive characteristics of 

leukemic cells. The extraction of 

morphological features like cell area, perimeter, 

circularity and textural features using Gray 

Level Co-occurrence Matrix (GLCM) has 

proven effective in distinguishing leukemic 

cells from healthy ones [6] [7]. Among various 

classifiers, Random Forest has demonstrated 

robust performance due to its ability to handle 

high-dimensional features and resistance to 

overfitting [8]. Despite these advantages, 

Random Forest classifiers still face challenges 

in achieving optimal accuracy and reducing 

false positive rates in ALL detection. 

More recently, deep learning approaches, 

particularly Convolutional Neural Networks 

(CNNs), have shown promising results in ALL 

detection. Transfer learning techniques using 

pre-trained networks have helped overcome the 

limitation of small medical datasets [9] [10]. 

However, existing systems still face challenges 

in balancing sensitivity and specificity, often 

resulting in high false positive rates that could 

lead to unnecessary further testing [11]. 

Given the complementary strengths and 

limitations of both traditional machine learning 

and deep learning approaches, this study 

proposes a comparative analysis of both 

methodologies. Our research addresses the 

following key questions: (1) How do Random 

Forest classifiers and Deep Learning 

approaches compare in ALL detection 

performance when using the same dataset? (2) 

What morphological and textural features are 

most important for accurate classification? (3) 

Can these automated approaches achieve 

clinically viable performance levels that could 

support pathologists in their diagnostic 

workflow? 

This study conducts a comparative analysis 

of two distinct methodologies: (1) a Random 

Forest classifier using carefully engineered 

morphological and textural features, and (2) a 

CNN architecture for automated feature 

learning. This comparative approach allows us 

to evaluate the strengths and limitations of each 

method while providing insights into their 

potential complementary nature in ALL 

detection. 

MATERIAL AND METHODS 

Dataset 

The dataset used in this study was obtained 

from The Cancer Imaging Archive's ALL 

Challenge dataset of ISBI 2019 [12]. Acute 

lymphoblastic leukemia (ALL), being the most 

common pediatric cancer type, accounts for 

approximately 25% of childhood cancers. The 

dataset consists of 15,135 segmented white 
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blood cell images from 118 patients, classified 

into two categories: normal cells and leukemia 

blasts. These images were captured under 

microscopic examination and include real-

world characteristics such as staining noise and 

illumination variations, though these artifacts 

have been largely minimized during the 

acquisition process. The ground truth labels 

were annotated by an expert oncologist, which 

is crucial given the challenging nature of 

distinguishing immature leukemic blasts from 

normal cells due to their morphological 

similarities. From the total 15,135 images, we 

used 10,661 images split into 7,462 training 

samples, 1,599 validation samples, and 1,600 

test samples. 

Fig. 1 shows representative examples of 

ALL and normal lymphocyte images from the 

dataset. ALL cells (Fig. 1a) typically exhibit 

distinct morphological characteristics including 

larger cell size (approximately 15-20 μm in 

diameter compared to 7-10 μm for normal 

lymphocytes), irregular nuclear shapes, and less 

condensed chromatin patterns. The nuclei of 

ALL cells often show irregular boundaries and 

contain visible nucleoli. In contrast, normal 

lymphocytes (Fig. 1b) display more uniform 

characteristics with round to slightly indented 

nuclei, condensed chromatin patterns, and a 

higher nuclear-to-cytoplasmic ratio. The 

cytoplasm in normal lymphocytes appears as a 

thin, regular rim around the nucleus, while ALL 

cells often show more abundant and irregular 

cytoplasmic distributions. 

 

 

Fig. 1. Representative microscopic images from 

the dataset: (a) ALL cells showing 

characteristic blast morphology with 

larger size, irregular nuclear shapes, and 

visible nucleoli; (b) Normal 

lymphocytes displaying typical features 

of mature cells with compact size and 

regular nuclear patterns 

 

Feature Extraction  

 

 

Fig. 2. Diagram of methodology 

 

Our feature extraction process encompasses 

multiple aspects of the cell images, as 

illustrated in Fig 2. The methodology follows a 

systematic approach: 

a) Image Preprocessing: The input images 

undergo initial preprocessing to 

standardize the image quality and reduce 

noise. 

b) Feature Extraction Pipeline: (i) Shape 

Analysis: Features including area, 

perimeter, circularity, solidity, and aspect 

ratio are extracted to capture the 

morphological characteristics of the cells. 

(ii) Texture Analysis: Gray Level Co-

occurrence Matrix (GLCM) is computed to 

derive measures of contrast, dissimilarity, 

homogeneity, energy, and correlation. (iii) 

Intensity Analysis: Distribution metrics 

including mean intensity, standard 

deviation, and skewness are calculated. (iv) 

Edge Analysis: Edge density and Sobel 

mean are computed to capture boundary 

characteristics. 

c) Feature Vector Generation: All extracted 

features are combined into a 

comprehensive feature vector for 

classification.  
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Classification and Implementation 

The Random Forest classifier was 

implemented with 100 estimators and balanced 

class weights to handle potential class 

imbalance. The dataset was divided into 

training (70%), validation (15%), and test 

(15%) sets using stratified sampling to maintain 

class distribution. To enhance model 

generalization, data augmentation techniques 

were applied during the training phase. 

Model performance was evaluated using 

standard metrics including accuracy, precision, 

recall, and F1-score, calculated on both 

validation and test sets to ensure robust 

evaluation. The entire system was implemented 

using Python, leveraging OpenCV for image 

processing, scikit-image for feature extraction, 

and scikit-learn for machine learning 

implementation. 

Deep Learning Implementation 

In addition to the Random Forest classifier, 

we implemented a CNN-based deep learning 

approach. The architecture consists of three 

convolutional blocks, each containing a 

convolutional layer with ReLU activation, 

batch normalization, and max pooling. The 

network processes input images of size 

128×128×3 pixels and includes the following 

key components: 

1. Convolutional blocks:  

o First block: 32 filters (3×3). 

o Second block: 64 filters (3×3). 

o Third block: 128 filters (3×3). 

2. Dense layers:  

o Two fully connected layers (128 and 

64 units). 

o Dropout layers (0.5 and 0.3) for 

regularization. 

o Binary classification output with 

sigmoid activation. 

 

The model was trained using the Adam 

optimizer with a learning rate of 0.001 and 

binary cross-entropy loss. Data augmentation 

techniques including rotation, width/height 

shifts, and horizontal flips were employed to 

enhance model generalization. 

RESULT AND DISCUSSION  

Random Forest Results 

The Random Forest classifier was trained 

using a comprehensive dataset of 7,462 cell 

images, comprising 2,372 healthy (normal) and 

5,090 ALL cases. Analysis of feature 

importance revealed that morphological and 

intensity-based characteristics were the most 

significant discriminators in the classification 

process. The cell area emerged as the most 

influential feature, contributing 11.03% to the 

model's decision-making process, followed by 

intensity skewness (10.73%) and energy 

(10.68%). This finding aligns with clinical 

observations, as ALL cells typically exhibit 

distinct morphological changes, including 

irregular cell sizes and nuclear characteristics. 

 

Table 1.  Top 10 mostimportant features in ALL 

detection 
Rank Feature Importance (%) 

1 Area 11.03 

2 Skewness 10.73 

3 Energy 10.68 

4 Perimeter 8.70 

5 Homogeneity 7.98 

6 Mean Intensity 6.69 

7 Std. Intensity 6.06 

8 Dissimilarity 5.17 

9 Sobel Mean 5.13 

10 Aspect Ratio 5.05 

 

These identified important features were 

used in the classification process, where the 

model's performance was evaluated through 

extensive validation and testing. The model's 

performance was assessed using both validation 

and test sets, demonstrating consistent and 

robust results across different data splits. In the 

validation set (n=1,599), the model achieved an 

overall accuracy of 86%. The model 

demonstrated high precision in identifying both 

normal cells (85%) and ALL cells (86%). 

Notably, the recall rate for ALL cells was 

particularly strong at 94%, though lower for 

normal cells at 67%. These results are detailed 

in the confusion matrix shown in Table 2. 

 

Table 2.  Confusion matrix for validation set 
 Predicted 

Normal 

Predicted 

ALL 

Actual Normal 342 166 

Actual ALL 62 1,029 

 

The test set results (n=1,600) closely 

mirrored the validation performance, indicating 

strong generalization capability. The overall 

accuracy remained stable at 86% versus 85%, 
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with precision rates of 82% for normal cells and 

85% for ALL cells. The model maintained its 

high sensitivity for ALL detection at 93%, 

while normal cell detection remained at 66%. 

The test set confusion matrix is presented in 

Table 3. 

 

Table 3.  Confusion matrix for test set 
 Predicted 

Normal 

Predicted 

ALL 

Actual Normal 335 174 

Actual ALL 72 1,019 

 

The comparison between validation and test 

results reveals consistency in the model's 

performance. The minimal difference in overall 

accuracy (86% versus 85%) and the stable 

sensitivity rates for ALL detection (94% versus 

93%) demonstrate the model's reliability. The 

error patterns remained consistent across both 

sets, with false positive rates showing minimal 

variation (166 versus 174 cases) and false 

negative rates displaying a slight increase from 

62 to 72 cases. 

From a clinical perspective, the high 

sensitivity for ALL detection (93% to 94%) is 

particularly valuable as it minimizes the risk of 

false negatives, which could lead to delayed 

treatment. The moderate specificity for normal 

cells suggests that while some healthy samples 

might be flagged for further investigation, this 

conservative approach is preferable to missing 

potential ALL cases. 

The model's reliance on both morphological 

and textural features aligns with the traditional 

diagnostic approach used by 

hematopathologists. The high importance of 

cell area and intensity-based features suggests 

that the model has successfully captured key 

diagnostic criteria used in manual examination. 

However, the lower performance in identifying 

normal cells, potentially influenced by the class 

imbalance in the training data, indicates areas 

for future improvement. 

Deep Learning Results 

The implementation of the deep learning 

approach revealed several interesting patterns 

in both the training process and final 

performance metrics. The convolutional neural 

network demonstrated learning capabilities 

while managing the class imbalance present in 

the dataset. 

The confusion matrix of the deep learning 

model's performance on the test set is shown in 

Table 4. The test set comprised 1,600 cases, 

with 1,091 ALL cases and 509 normal cases, 

maintaining the natural class distribution of the 

dataset. The model demonstrated overall 

performance with 1,023 true positives and 369 

true negatives, resulting in an accuracy of 

87.0%.  

 

Table 4.  Confusion matrix for test set 
 Predicted 

Normal 

Predicted 

ALL 

Actual Normal 369 174 

Actual ALL 68 1,203 

 

The model correctly identified 93.8% of 

ALL cases, demonstrating robust performance 

in detecting malignant conditions. This high 

sensitivity is crucial for clinical screening 

applications, as it minimizes the risk of missing 

potential leukemia cases. The strong true 

positive rate suggests effective learning of key 

ALL cell characteristics through the deep 

learning architecture. 

Analysis of Misclassification Cases 

Further analysis of misclassification cases 

reveals interesting patterns in how the model 

makes its decisions. Fig. 3 presents 

representative examples of false positive and 

false negative cases of Random Forest 

classifier, providing insights into the model's 

limitations and challenges in ALL detection. 

 

 

Fig. 3. Examples of false positive and false 

negative cases 

 

In false positive cases (normal cells 

incorrectly classified as ALL), the cells exhibit 

certain characteristics that the model associates 

with ALL cells. These cells show slightly 

irregular shapes and variations in their nuclear 

patterns. The confidence levels of these 

misclassifications vary from 61.0% to 77.0%, 

suggesting some degree of uncertainty in the 
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conservative approach ensures higher 

sensitivity for ALL detection at the cost of 

moderate specificity. 

 

These findings reinforce the importance of 

expert validation in the diagnostic process and 

suggest potential areas for improvement in the 

classification system, such as incorporating 

additional features or implementing multi-stage 

classification approaches for ambiguous cases. 

Data Balance Issues and Impact on 

Classification Performance 

The dataset employed in this study exhibits 

a significant class imbalance, with 5,090 ALL 

cases compared to 2,372 normal cases in the 

training set (ratio ≈ 2:1). This imbalance 

profoundly impacts model performance, 

particularly for the Random Forest (RF) 

classifier, which achieved an overall accuracy 

of 85% but suffered from a high false positive 

rate (FPR) of 35.76%. The elevated FPR 

indicates a systematic bias toward classifying 

normal cells as ALL, likely attributable to the 

dominance of ALL samples during training. 

This pattern persisted across both validation 

and test sets, as evidenced by consistent 

misclassification rates for normal cells (e.g., 

174 false positives in the test set vs. 166 in 

validation), despite the implementation of class 

weight balancing. 

The Deep Learning (DL) model 

demonstrated marginally better resilience to 

class imbalance, achieving a lower FPR of 

27.50%. This improvement may stem from the 

CNN’s ability to autonomously learn 

hierarchical features from raw images, reducing 

reliance on handcrafted features that may 

inadequately represent minority-class 

characteristics. However, both models retained 

a residual bias toward ALL classification, 

underscoring the need for advanced imbalance 

mitigation strategies. 

To address these challenges, we propose the 

following approaches: 

1. Synthetic Oversampling: Techniques like 

SMOTE could generate synthetic normal 

cell samples, enhancing feature diversity 

for the minority class. Prior studies (e.g., 

Das et al.[11]) have shown SMOTE’s 

efficacy in improving specificity by 15–

20% in hematological datasets. 

2. Strategic Undersampling: Reducing ALL 

samples while preserving morphological 

diversity could alleviate bias. However, ths 

model's  predictions.  Notably,  even  some

regular-appearing  lymphocytes  were

misclassified,  indicating  that  morphological

features alone may not always be sufficient for

accurate classification.

  The  false  negative  cases  (ALL  cells

incorrectly  classified  as  normal)  demonstrate

another  aspect  of  the  classification  challenge.

Despite  being  ALL  cells,  these  samples  show

more regular morphological patterns typical of

normal  lymphocytes,  including  relatively

regular  nuclear  shapes  and  uniform  chromatin

distribution.  The  model's  confidence  levels  in
these  misclassifications  range  from  63.0%  to
79.0%,  highlighting  the  difficulty  in
distinguishing  certain  ALL  cases  that  don't

present typical blast cell characteristics.

  These  misclassification  patterns  suggest

several key insights:

a) Morphological  Ambiguity:  Some  normal 
lymphocytes may exhibit irregular features 
that mimic ALL characteristics, while some 
ALL  cells  may  appear  more  regular  than

typical blast cells. This natural variation in

cell  morphology  presents  an  inherent

challenge  for  automated  classification

systems.

b) Confidence  Levels:  The  model's 
confidence  levels  for  misclassified  cases

(ranging  from  61.0%  to  79.0%)  indicate 
significant uncertainty in these predictions.

This  suggests  potential  value  in
implementing  a  confidence  threshold

system  where  cases  below  certain

confidence  levels  could  be  flagged  for

expert review.

c) Feature  Limitations:  The  observed 
misclassifications  suggest  that  while 
morphological  and  textural  features  are

powerful  discriminators,  they  may  not

capture  all  relevant  characteristics  for

perfect  classification.  This  aligns  with

standard clinical practice where  additional

diagnostic  tools,  particularly

immunophenotyping,  are  essential  for

definitive  diagnosis  and  classification  of

ALL, as morphological assessment alone is

insufficient for accurate diagnosis  [13].
d) Clinical  Implications:  The  pattern  of 

misclassifications,  particularly  the 
presence  of  false  positives  with  relatively 
high  confidence  levels  (up  to  77.0%),

supports  the  system's  current

implementation  as  a  screening  tool  rather

than  a  definitive  diagnostic  solution.  This
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requires caution to avoid losing critical 

blast cell variations. 

3. Imbalance-Specific Ensembles: Methods 

such as EasyEnsemble, which trains 

multiple balanced subsets, or cost-sensitive 

learning frameworks that penalize false 

positives more heavily, could refine 

decision boundaries. 

4. Focal Loss Integration: For DL models, 

focal loss [14] could prioritize 

misclassified normal cells during training, 

countering the majority class’s dominance. 

 

While the DL model’s lower FPR highlights 

its potential for clinical deployment, the RF’s 

interpretability remains invaluable for 

validating feature relevance (e.g., cell area, 

GLCM energy). A hybrid framework 

combining DL’s performance with RF’s 

explainability, augmented by imbalance-aware 

training, could optimize both sensitivity and 

specificity. Future work should also explore 

multimodal data fusion (e.g., 

immunophenotyping) to resolve 

morphologically ambiguous cases, further 

bridging the gap between automated systems 

and clinical diagnostics. 

CONCLUSION  

This study set out to address a critical 

challenge in ALL diagnosis: the development 

of accurate, automated detection systems that 

can reduce the burden of manual microscopic 

examination while maintaining high diagnostic 

accuracy. Our research questions focused on: 

(1) identifying the most discriminative 

morphological and textural features for ALL 

detection, (2) comparing the performance of 

traditional machine learning versus deep 

learning approaches, and (3) evaluating the 

clinical applicability of these systems as 

potential screening tools. 

The systematic evaluation through our 

research has yielded several significant findings 

that directly address these questions. First, our 

feature importance analysis conclusively 

identified cell area (10.71%), energy (10.67%), 

and intensity skewness (10.50%) as the most 

significant discriminative features, providing 

quantifiable metrics that align with traditional 

diagnostic criteria used by hematopathologists. 

These findings contribute valuable knowledge 

by quantifying the relative importance of 

specific cell characteristics in ALL detection, 

which can inform both manual and automated 

diagnostic approaches. 

Second, our comparative performance 

analysis revealed that while both approaches 

demonstrated promising results, the Deep 

Learning model achieved superior performance 

with 87.00% accuracy compared to the Random 

Forest classifier's 85.00%. More importantly, 

the CNN architecture significantly reduced 

false positive rates (27.50% vs 35.76%), a 

critical factor for clinical implementation. This 

finding challenges the widespread use of 

Random Forest classifiers in previous ALL 

detection research and suggests that deep 

learning approaches may offer substantial 

advantages for this specific application. 

Third, our detailed analysis of 

misclassification patterns revealed fundamental 

limitations in morphology-based classification 

that affect both approaches. The persistent false 

positive rates indicate that while these systems 

show promise as screening tools, they currently 

lack the specificity required for definitive 

diagnosis without expert verification. 

The primary contribution of this work lies in 

its comprehensive comparison of feature-based 

and deep learning approaches, revealing their 

complementary strengths and limitations. 

While the Deep Learning model demonstrated 

superior overall performance, particularly in 

reducing false positives, the Random Forest 

model provided greater interpretability through 

its feature importance analysis. This finding 

suggests that future systems might benefit from 

hybrid approaches that combine the 

interpretability of feature-based methods with 

the superior classification performance of deep 

learning. 
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