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Abstract 

 
Chronic Kidney Disease (CKD) is a serious global health issue, ranking as the 12th 

leading cause of death in 2019, with a 31.7% increase since 2010. Many CKD patients 

require hemodialysis, which poses risks of complications such as hypertension, 

hypotension, and gastrointestinal disorders, increasing mortality. This study predicts 

hemodialysis complications using XGBoost optimized with the Artificial Bee Colony 

(ABC) algorithm. The dataset includes numerical and categorical variables such as 

blood pressure, hemoglobin levels, gender, and complication history. To improve class 

distribution, the Synthetic Minority Over-sampling Technique is applied. Five test 

scenarios with different ABC parameter configurations were conducted to optimize 

XGBoost hyperparameters. Results indicate that balancing the dataset with SMOTE 

enhances model accuracy. Among the tested scenarios, Test 3, with ABC parameters 

n_bees set to 30, max_iter set to 30, and limit set to 10, achieved the highest accuracy, 

increasing from 89% (unbalanced) to 94% (balanced). Although training time 

increased, the improved performance highlights the potential of the XGBoost-ABC 

framework for early complication detection. This approach can enhance patient care, 

reduce mortality risks, and support clinical decision-making for hemodialysis patients.          

Key words: Artificial Bee Colony, Complications, Hemodialysis, Hyperparameter, 

XGBoost. 

 

 

INTRODUCTION 

Chronic Kidney Disease (CKD) is 

currently one of the serious health issues 

that has received global attention. As of 

2021, the World Health Organization 

(WHO) reported that no fewer than 843.6 

million individuals worldwide had been 

affected by this disease. This number is 

estimated to continue to increase by 41.5% 

by 2040. The mortality rate recorded by the 

WHO was 1.2 million deaths in 2019, and 

this figure continues to increase compared 

to the previous year, making it one of the 

diseases with the fastest increase in 

mortality. In 2015, 500 million people were 

recorded as suffering from Chronic Kidney 

Disease (CKD). The high number of deaths 

from Chronic Kidney Disease (CKD) 

places this disease as one of the top 12 

causes of death in the world [1]. 
In Indonesia, the number of cases of 

Chronic Kidney Disease (CKD) continues to 

show a significant increase. Based on data from 

Basic Health Research (Riskesdas) conducted 

by Indonesia’s Ministry of Health (Kemenkes) 
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in 2007, there were 1,885 recorded cases of 

CKD. This number surged significantly to 

11,689 cases in 2013, and by 2018, it had 

escalated to 713,783 cases [2]. This rising trend 

highlights CKD as a critical health concern in 

Indonesia, necessitating focused attention and 

strategic intervention. 

Chronic Kidney Disease (CKD) is a 

progressive condition that leads to a permanent 

decline in kidney function, eventually reaching 

end-stage (stage 5), which requires renal 

replacement therapy such as hemodialysis, 

peritoneal dialysis, or kidney transplantation 

[3]. Hemodialysis is the most commonly used 

method, as it replaces kidney function by 

filtering the blood using a machine. The high 

prevalence of CKD in Indonesia is reflected in 

the increasing number of hemodialysis patients, 

as recorded in the 13th Indonesian Renal 

Registry, with around 60,000 new patients and 

130,000 active patients in 2020 [4][5]. This 

situation highlights the importance of proper 

CKD management, particularly at Dr. Iskak 

General Hospital in Tulungagung, which has 

been designated a Regional Referral Hospital 

since 2015 and currently treats 60 active 

hemodialysis patients, with an additional 20–30 

new patients each month [6]. 

Hemodialysis patients are at high risk of 

various medical complications that can reduce 

their quality of life. These complications 

include hypertension, hypotension, nausea, 

vascular access infections, arrhythmias, 

headaches, muscle cramps, and other 

potentially fatal conditions [3]. The 2020 

Indonesia Renal Registry (IRR) report from the 

Indonesian Nephrology Association 

(PERNEFRI) noted intradialytic hypertension 

as the most common complication, with an 

incidence of 30%, while hypotension increased 

from 14% to 27%. In addition, cardiovascular 

problems are identified as the primary cause of 

death in hemodialysis patients, reaching rates of 

42% [5]. 

 Given the high risk of complications and 

mortality in hemodialysis patients, this problem 

is an urgent health issue to be addressed. 

Therefore, an early detection system is needed 

to identify potential complications more 

quickly and accurately. Currently, doctors still 

do the detection of complications manually by 

reviewing patient data directly, a method that 

has significant limitations [6]. As the number of 

patients increases and the complexity of clinical 

variables such as age, gender, blood pressure, 

hemoglobin levels, serum creatinine, and serum 

albumin, this manual process becomes 

increasingly inefficient and prone to human 

error [7]. 

To detect potential complications in 

hemodialysis patients earlier, a machine 

learning classification model can be applied 

using patient medical data such as age, gender, 

blood pressure, hemoglobin levels, and other 

relevant features. However, implementing this 

model poses challenges, particularly in 

handling large and unbalanced datasets that 

contain both numerical and categorical 

variables [8]. Data imbalance-such as when 

patients experiencing complications are 

significantly fewer than those who do not, or 

when complication types are unevenly 

distributed-can reduce model accuracy and 

performance. Additionally, the complexity and 

variety of features, time and storage limitations, 

and the risk of overfitting further complicate the 

modeling process. To address these issues, this 

study employs the Extreme Gradient Boosting 

(XGBoost) classification model, which is 

known for its efficiency in handling large 

datasets, strong scalability, resistance to 

overfitting, and high predictive accuracy [9]. 

XGBoost has been proven effective in 

dealing with data imbalance issues in various 

research fields. For example, in research 

conducted by Zhao 2018, this algorithm can 

overcome challenges in unbalanced datasets, 

even outperforming other techniques in data 

processing performance [10]. Although 

XGBoost is known as a very strong and reliable 

algorithm, it has major challenges, especially 

the difficulty in choosing optimal parameters 

[9]. To address this, the Artificial Bee Colony 

(ABC) optimization method is employed. This 

method emulates the natural foraging patterns 

of bees to determine the most suitable 

parameters for XGBoost. 

Research related to the prediction of 

hemodialysis complications has been 

conducted in several previous studies. One 

study by Hsieh, Hwang, et al. 2022 used data 

from 264 patients collected from May 2019 to 

March 2021 at Chang-Hua Hospital, Ministry 

of Health and Welfare (MOHW), Taiwan. This 

study aims to predict hemodialysis 

complications, such as hypotension and AV 

fistula, by applying the XGBoost algorithm. 

The results showed a precision level ranging 

from 71% to 90% [11]. In addition, in the study 

by Othman, Mustafa, et al. 2022 using data 
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from 215 patients at El-Mowasah Hospital, 

Alexandria University, the study aims to predict 

seven types of complications that may occur, 

namely hypotension, hypertension, shortness of 

breath, nausea, cramps, headaches, and chest 

pain. The implementation of the Artificial 

Neural Network (ANN) model in this study 

resulted in an accuracy of 82%, with specificity 

ranging from 40% to 95% [12]. 

Research by Dong, Wang, et al. 2023 used 

hemodialysis patient data from the Quality 

Control Center in Shenzhen City, China, to 

predict intradialytic hypotension. The model 

applied is the Light Gradient Boosting Machine 

(LightGBM), which achieves a C-

statistics/Area Under Curve (AUC) accuracy of 

0.82, while other models show an AUC range 

between 0.77 and 0.89 [13]. Research on the 

prediction of hemodialysis complications in 

Indonesia is still minimal. A study conducted 

by Suparti and Nurul (2019) analyzed data from 

56 hemodialysis patients at Prof. Dr. Margono 

Soekarjo Purwokerto Regional Hospital. Using 

a multiple linear regression model, they 

examined the relationship between oxygen 

saturation (SpO2), heart rate (HR), and the 

occurrence of intradialytic complications. The 

findings indicated that SpO2 and HR could 

predict 49.9% of complications in the first hour. 

This predictive power declined to 27.9% in the 

second hour, remained relatively stable in the 

third hour (27.0%), and increased slightly to 

29.4% in the fourth hour [14]. 

The study conducted by Nirvan and Rohman 

(2024) aimed to optimize the performance of 

the XGBoost algorithm in stunting 

classification by comparing two 

hyperparameter optimization methods: Grid 

Search and Random Search. The results showed 

that Grid Search improved the model's accuracy 

from 83.28% to 89.09%, while Random Search 

achieved an accuracy of 88.71%. Although 

both methods were effective in enhancing 

model performance, each has its limitations. 

Grid Search, despite being systematic, has a 

major drawback in terms of time and 

computational efficiency, as it must evaluate all 

possible parameter combinations-making it 

impractical when dealing with a large and 

complex hyperparameter space. On the other 

hand, Random Search is faster since it evaluates 

combinations randomly, but lacks 

thoroughness and may miss the optimal 

configuration. Both methods tend to be less 

adaptive and are unable to dynamically guide 

the search toward more promising solution 

spaces [15]. 

Based on previous research, this study 

proposes a more optimal approach by 

combining the Artificial Bee Colony (ABC) 

algorithm to optimize XGBoost parameters to 

predict complications in hemodialysis patients. 

The ABC technique is a metaheuristic approach 

that relies on honeybee foraging behavior. In 

this procedure, the bees are divided into three 

groups: employed bees, which investigate 

initial answers; observer bees, who choose 

solutions based on likelihood; and scout bees, 

who hunt for fresh solutions in various places.  

This concept allows ABC to tackle various 

optimization issues efficiently and frequently 

beats other methods like Genetic Algorithms or 

Particle Swarm Optimization (PSO) [9]. In 

addition, to overcome the limitations of the 

unbalanced class distribution in complicated 

data, this study applies the Synthetic Minority 

Over-sampling Technique (SMOTE). SMOTE 

balances the data distribution by synthesizing 

new samples in minority classes so that the 

model can learn better to recognize rare 

complication patterns [16]. This study uses 

XGBoost, ABC optimization, and SMOTE data 

balancing approaches to build a prediction 

model for assessing the risk of hypertension, 

hypotension, and gastrointestinal problems in 

hemodialysis patients. The resulting model is 

expected to help medical personnel detect early 

risk, enabling more effective interventions to 

prevent complications. 

MATERIAL AND METHODS 

Fig. 1 illustrates the research flow designed 

systematically to predict types of complications 

in hemodialysis patients. The research began 

with collecting information on hemodialysis 

patients and relevant medical records. The next 

step involved data pre-processing to manage 

missing values, eliminate duplicate entries, and 

ensure data consistency. The parameters of the 

Artificial Bee Colony (ABC) and XGBoost 

algorithms are then set to ensure optimal model 

performance. In the modeling stage, XGBoost 

optimization using ABC is carried out through 

parameter initialization, division of the worker 

bee population and foragers, and iterative 

evaluation to improve prediction accuracy. The 

best resulting model is used to classify 

hemodialysis complications, such as 

hypertension, hypotension, and gastrointestinal 
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disorders. This study's findings are likely to 

increase the early diagnosis of complications 

and assist medical personnel in making more 

accurate and efficient decisions. 

Data Collecting 
This study utilized a dataset from the 

medical records of 200 hemodialysis patients 

treated at Dr. Iskak Tulungagung Regional 

Hospital from 2022 to 2024. This data includes 

15 features used to predict hemodialysis 

complications, which are classified into four 

categories: hypertension, hypotension, 

gastrointestinal disorders, and no 

complications. The specifics of the utilized 

features are presented in Table 1. 

 
Table 1. Hemodialysis dataset feature 

Feature Description 

Gender Gender (male/female) 

Age Patient's age in years 

Blood 

pressure 

Systolic and diastolic blood 

pressure (mmHg) 

Hemoglobin Hemoglobin level in the blood 

(g/dL) 

SI-TIBC Transferrin capacity filled by 

iron in the blood (%) 

Urea Urea level in the blood (mg/dl) 

Creatinine Creatinine level in the blood 

(mg/dl) 

EPO_3000 Administration of 

erythropoietin 3000 IU to treat 

anemia 

EPO_2000 Administration of 

erythropoietin 2000 IU to 

stimulate red blood cell 

production. 

Tron_Sucrose Intravenous iron supplements 

to treat iron deficiency. 

Hemodialysis 

Duration 

Duration of hemodialysis per 

month 

Medical 

history 

Patient and family medical 

history 

Type of 

Complications 

Type of patient complications 

(hypertension, hypotension, 

and gastrointestinal) 

 

Data Preprocessing 
The preprocessing stage in this study 

includes data understanding, handling missing 

values, encoding data, and applying test 

scenarios to different data parameters and 

distributions. 

 

Fig.  2. Preprocessing data 

Data Understanding and Exploration 
The results of data exploration show the 

distribution of complication classes in the 

dataset as follows: without complications (142 

cases), hypertension (93 cases), gastrointestinal 

complications (93 cases), and hypotension (58 

cases). 

Check and Handling Missing Value 
This study imputed blank data in numeric 

columns, such as systolic, diastolic, 

hemoglobin, and urea, using the mean value. In 

contrast, categorical data, such as drug type 

(EPO 2000 and 3000), were filled with the 

mode value. 

Data Encoding 
Before modeling, categorical variables such 

as gender, EPO 2000, EPO 3000, medical 

history, and type of complications are 

converted to numerical format using label 

encoding. This transformation ensures that all 

features can be processed by the XGBoost 

algorithm, including the target variable 

representing the type of patient complications. 

ABC-XGBOOST METHOD 

PRINCIPLE 
Tianqi Chen invented Extreme Gradient 

Boosting (XGBoost), a boosting-based 

ensemble technique, in 2014. This algorithm is 

designed to improve model accuracy by 

correcting classification errors from previous 

iterations and optimizing decision tree learning 

in parallel to speed up execution [17]. XGBoost 

has scalability, efficiency, and flexibility 

advantages, making it popular in various 

machine learning tasks, including classification 

and regression. As a Gradient Boosting 

Decision Tree (GBDT) development, this 

algorithm can significantly speed up the 

computing process [18]. However, the primary 

disadvantage of this approach is the difficulty 

of establishing hyperparameters, which takes 

time and experience in optimal adjustment [9]. 

To overcome the challenge of determining 

the best hyperparameters in XGBoost, the 

Artificial Bee Colony (ABC) algorithm is 

applied to optimize parameter selection and 

enhance model performance efficiently. This 

metaheuristic optimization technique simulates 
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the foraging behavior of bees in identifying and 

utilizing optimal resources. This algorithm 

divides bees into three leading roles: worker 

bees that explore food sources, observer bees 

that choose the best source based on the 

information obtained, and explorer bees that 

look for new alternatives to maintain the 

diversity of solutions. This process continues 

until it meets specific criteria, such as the 

maximum limit of iterations [9]. 

The process of combining the ABC and 

XGBoost algorithms in predicting 

complications in hemodialysis patients based 

on medical record data is carried out the stages 

shown in Fig. 3. 

The conventional Gradient Boosting 

Decision Tree (GBDT) approach only uses 

first-order derivatives and has limitations in 

parallel training due to the dependence between 

weak learner models. XGBoost overcomes this 

by incorporating a second-order Taylor 

expansion, as shown in Equation (1), which 

refines the approximation of the loss function. 

Moreover, XGBoost incorporates a 

regularization component to optimize both the 

objective function and model complexity, 

effectively minimizing the potential for 

overfitting [19][20]. The XGBOOST formula is 

defined as follows: 

 

ŷ𝑖 =  ∑ 𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝐹

𝐾

𝑘=1

 

 

 

(1) 

In this context, K signifies the total count of 

decision trees, while 𝑓𝑘(𝑥𝑖) represents the input 

function associated with the k-th decision tree. 

The predicted outcome is denoted ŷ𝑖, whereas 

F encompasses all potential Classification and 

Regression Trees (CART). 

 

 
Fig.  3. Ilustration model XGBoost and ABC

 

 

Fig. 1. Systematic research flow for predicting complication types in hemodialysis patients 
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Fig. 4. Flowchart of XGBoost model (adapted from [21]) 

 

 
The XGBoost equation iteratively 

constructs new trees that adjust to the residuals 

of the previous trees, gradually improving 

model accuracy. This tree-adding process is 

governed by the objective function, which 

evaluates and optimizes model performance at 

each iteration [19]. The objective function for 

the at-th iteration, as defined in Equation (2), is 

expressed as follows: 

𝑶𝒃𝒋 (𝒕) =  ∑ 𝑳 [(𝒚𝒊, ŷ𝒊
(𝒕−𝟏)

) + 𝒇𝒕(𝒙𝒊)] +

𝒏

𝒊=𝟏

𝜴(𝒇𝒕) 

 

 

(2) 

Where 𝐿 (𝑦𝑖 , ŷ𝑖) represents the training loss 

for a given sample, with ŷ𝑖 as the predicted 

value and 𝑦𝑖 as the actual classification label. 

Meanwhile, 𝛺(𝑓𝑡) serves as the regularization 

component, refining the model structure while 

minimizing the risk of overfitting, as defined in 

Equation (3): 

𝛺 (𝑓) =   𝑇 +
1

2
∑𝑗

2 

𝑇

𝑗=1

 

 

(3) 

In this context, 𝑇 signifies the total count of 

leaf nodes, while 𝑗 represents the weight 

assigned to each leaf node. The constants   and 

  function as penalty coefficients. The 

objective function is estimated through a Taylor 

series expansion, utilizing a second-order 

approximation derived from Equation (2), as 

formulated in Equation (4). 

𝑶𝒃𝒋 (𝒕) =  ∑[ 𝑳 (𝒚𝒊, ŷ𝒊
(𝒕−𝟏)) + 𝒈𝒊 𝒇𝒕(𝒙𝒊) +

𝟏

𝟐
𝒉𝒊 𝒇𝒕

𝟐(𝒙𝒊) ] +

𝒏

𝒊=𝟏

𝜴(𝒇𝒕) 

 

 

(4) 

Each term corresponds to the first and second 

derivatives of a given pair, allowing Equation 

(4) to be rewritten in a simplified form as 

follows: 

𝑂𝑏𝑗  (𝑡) =  ∑[ (∑ 𝑔𝑖 

𝑖∈𝐼 𝑗  

)𝑗 +
1

2
(∑ ℎ𝑖 

𝑖∈𝐼 𝑗

+ 

 

)𝑗
2 ] +

𝑇

𝑗=1

  𝑇 

 

 

(5) 

The optimal weight that minimizes the 

objective function can be determined by 

deriving its partial derivative and solving for 

zero, as shown in Equation (6). 

 𝑗
∗ = −

∑ ( 𝑔𝑖 )𝑖 ∈ 𝐼 𝑗 

∑  (𝑖 ∈ 𝐼 𝑗 ℎ𝑖 + )
 

 

 

(6) 

By replacing Equation (6) into Equation (5), the 

best objective function value is determined, as 

shown in Equation (7). 

𝑶𝑏𝑗  ∗ = −
1

2

∑ ( 𝑔𝑖 )𝑖 ∈ 𝐼 𝑗

∑ (𝑖 ∈ 𝐼 𝑗 ℎ𝑖 + )
+    𝑇 

 

 

(7) 

Throughout the training phase, the model 

incrementally computes the loss at every node 

to identify the leaf node with the most 

significant loss increase. XGBoost sequentially 

adds new trees by selecting optimal feature 

splits. Each new tree learns a function 

𝑓𝑘(𝑥, 𝜃𝑘) to refine the residuals from previous 

sample is mapped to a particular leaf node in 

every tree, where each node is assigned a 

corresponding score [19]. The scores across all 

trees are then aggregated to generate the final 

prediction for the sample. A flowchart of the 

XGBoost process is shown in Fig. 4. 
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 In XGBoost modeling, it is necessary to 

determine various hyperparameters, such as the 

number of trees (T), learning rate (𝜂), and 

regularization coefficients (λ), to optimize 

performance. The large number of parameters 

makes the tuning process quite complex. To 

overcome this challenge, XGBoost 

optimization can be done using the Artificial 

Bee Colony (ABC) algorithm with the 

following stages: 

(1) In the first step, the ABC algorithm 

creates the initial population by 

determining the position of the food 

supply, which represents the first 

solution set.  Furthermore, the iterative 

procedure is repeated till it reaches the 

maximum number of cycles.  Three 

sorts of bees play a role in this process: 

employed bees, who seek solutions 

surrounding their current position; 

observer bees, which pick options 

based on likelihood; and scout bees, 

who hunt for new solutions when the 

previous ones aren't ideal [19].  The 

following equation (8) is used to 

generate a population of solutions 

(location of food sources):  

𝒙𝒊𝒋 = 𝒍𝒊  +  𝒓𝒂𝒏𝒅 (𝟎, 𝟏) ∗ (𝒖𝒊 − 𝒖𝒋) 
(8) 

Where 𝑖 = 1,2, … , 𝑆𝑁 and 𝑗 =
1,2, . . , 𝐷;  𝑆𝑁 indicate the total number 

of food sources, while D represents the 

number of parameters or problem 

dimensions, the variable 𝑢𝑖 and 𝑢𝑗 is 

the upper and lower bound of the 

solution space for the objective 

function. The function generates 

random numbers that are usually 

distributed in the range [0, 1]. 

(2) Furthermore, in the employed bee 

phase, worker bees are tasked with 

finding new food sources (alternative 

solutions) by comparing the amount of 

nectar (fitness value) of existing 

solutions. Solutions with better fitness 

values will be retained, while less 

optimal solutions will be ignored [19]. 

The acquisition of new solutions from 

old solutions is calculated using 

Equation (9), which determines the 

mechanism for updating the bee's 

position in the search space to improve 

the exploration of optimal solutions. 

𝒗𝒊𝒋 = 𝒛𝒊𝒋  +  𝝋 (𝒛𝒊𝒋 − 𝒛𝒌𝒋) 
 

(9) 

Where and represent two different food 

sources, indicate a certain dimension, 

and are random values that are 

uniformly distributed in the range [-1, 

1]. 

(3) During the onlooker bee phase, bees 

determine food sources based on the 

probability associated with the fitness 

of employed bees.  As in the previous 

phase, alternatives with higher fitness 

values will be preferred, while less 

optimum options will be ignored [19].  

The chance of picking a food source is 

computed using the following formula:  

𝑷𝒊  = 𝟏 − 
𝑬𝒊

∑ (𝟏 − 𝑬𝒋)𝑺𝑵
𝒋=𝟏

 

 

(10) 

(4) In the scout bee phase, ineffective food 

sources are replaced with new ones. If 

a source cannot be increased in a 

certain number of cycles (called a 

“limit”), it is considered obsolete and 

ignored [19]. Scout bees then generate 

new food sources using the same 

approach as in the initial phase. Once a 

new source is found, its fitness value is 

assessed against the prior one through 

a greedy selection process. The source 

exhibiting the highest fitness value is 

retained, while the previous one is 

discarded. 

(5) Next, the ABC algorithm will select the 

best food source. The processes in the 

employee bee, onlooker bee, and scout 

bee phases take place repeatedly until a 

predetermined iteration limit is 

reached. In each iteration, the results of 

each phase are compared, and the final 

solution is chosen based on the highest 

fitness value [19]. 

(6) The result of selecting the best food 

source represents the optimal 

combination of XGBoost parameters. 

The parameters obtained from this best 

solution are used to train the XGBoost 

model to improve prediction accuracy. 

Thus, the ABC algorithm 

automatically adjusts the XGBoost 

hyperparameters, include the number 

of trees, learning rate, and 

regularization coefficient, resulting in 
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the best-performing model. This 

optimization process continues until 

the model reaches the desired level of 

convergence or performance. The full 

stages of the ABC algorithm in the 

optimization process are illustrated in 

Fig. 5. 

  

 

Fig. 5. Artificial bee colony algorithm process 

 

Define XGBOOST and ABC Parameter 

Configuration  
At this stage, various parameter 

configuration settings were made for the 

Artificial Bee Colony (ABC) and XGBoost 

algorithms. In optimization using ABC, the 

three primary parameters adjusted are n_bee 

(number of bees), max_iter (maximum number 

of iterations), and limit (limit for searching for 

new solutions). These parameters were tested 

using five different testing schemes to evaluate 

their effect on optimization performance. 

Meanwhile, for the XGBoost algorithm, an 

optimal parameter range search was carried out 

for eight parameters that affect model 

performance. The range of values used in this 

parameter search is shown in more detail in 

Table 2. 

Metrics Evaluating Model Performance 
A confusion matrix is essential for assessing 

classification performance by comparing 

predicted labels with actual outcomes. It 

represents classification results using four key 

indicators: TP (True Positive), TN (True 

Negative), FP (False Positive), and FN (False 

Negative). These form the foundation for 

calculating key metrics like accuracy, 

precision, recall, and the F1 score, offering 

insights into the model’s ability to differentiate 

categories while minimizing error [21]. The 

confusion matrix allows for a more exact 

assessment of the model's prediction 

performance, revealing its strengths and 

limitations [22]. The mathematical 

formulations for these metrics are presented in 

Equations (11)-(14) [23]. 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁𝐴

𝐴𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
           (11) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑎 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃𝑎
                      (12) 

 

𝑅𝑒𝑐𝑎𝑙𝑙𝑎 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁𝑎
                   (13) 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙𝑎
     (14) 

 
Table 2. XGBoost parameter range 

Parameter Search Range 

n estimators (T) 100-1000 

learning rate (𝜂) 0,001 - 1 

regular coefficient (λ) 0-100 

max depth 3-10 

min child weight  0-100 

gamma (γ) 0-1 

subsample (s) 0-1 

colcample bytree 0-1 

RESULT AND DISCUSSION  

The implementation of medical 

complication prediction using XGBoost 

optimized with Artificial Bee Colony (ABC) is 

carried out through a series of systematic 

experiments. Initial testing focuses on selecting 

the optimal ABC parameter configuration. In 

this stage, five test scenarios were conducted by 

varying ABC parameters, including the count 

of worker bees (n_bees), the upper limit of 

iterations (max_iter), and the exploitation 

threshold (limit), to assess their impact on 

XGBoost's effectiveness, as shown in Table 3.  

 

Table 3. Testing Scenario with Artificial Bee 

Colony Parameter Variation 

Testing 

Scheme 

Set Parameter ABC 

n_bees max_iter limit 

1 10 10 5 

2 20 10 5 

3 30 30 10 

4 20 10 10 

5 20 20 10 

 

In addition, the model was tested on data 

with balanced and unbalanced class 

distributions to assess the robustness of its 

performance in various conditions. SMOTE 

(Synthetic Minority Over-sampling Technique) 
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was employed to handle dataset imbalance. The 

dataset was subsequently divided, with 80% 

used for training and 20% for testing, ensuring 

robust evaluation and generalization. 

Evaluation of the Best XGBoost Model 

with Parameter ABC in the Unbalanced 

Dataset 
Fig. 6 presents the results of the model 

evaluation based on five test scenarios 

performed on an unbalanced dataset. Of the five 

scenarios, Test Scenario 1 shows the best 

performance with the highest accuracy, which 

is 91%. This scenario uses ABC parameters 

with the configuration n_bee = 20, max_iter = 

10, and limit = 5. In addition, a comparison of 

iteration times shows that Scenario 1 has the 

fastest training time, which is 6 minutes, while 

Scenario 3 takes the longest time, which is 52 

minutes. The results of the model training time 

comparison are presented in more detail in Fig. 

7.  

 

 

Fig. 6. Accuracy comparison of testing schemes 

in the unbalanced dataset 

 

 

Fig. 7. Iteration time for each testing scheme in 

the unbalanced dataset 

 

Test Scenario 1 performs best in 

generating the ideal XGBoost model, according 

to the findings of the model evaluation of the 

accuracy in the imbalanced dataset. The 

optimization's optimal hyperparameters are 

displayed in Table 4. 

 
Table 4. Optimal hyperparameters for xgboost 

in test 1 

Parameter Best Parameter Value 

n estimators (T) 476 

learning rate (𝜂) 0.7130940260014383 

reg lambda (λ) 19.83568411211097 

max depth 5 

min child weight 0 

gamma (γ) 0.6076823245551388 

subsample (s) 0.7941295826978276 

colsample bytree 0.5119665847979727 

 

The performance evaluation of the best test 

scenario (Test 1) is illustrated in Fig. 8, which 

presents the learning curve based on Stratified 

K-Fold Cross-Validation. The graph compares 

the training score and cross-validation score as 

the training data increases, ensuring a balanced 

class distribution across folds for stable 

evaluation results [24]. As the amount of data 

increases, the model's accuracy improves, 

achieving a training score of 0.93 and a cross-

validation score of 0.87. This result suggests 

strong generalization capabilities with no 

significant overfitting. 

 

 

Fig. 8. Learning curve of test 1  

 

To analyze the performance of Test 

Scenario 1 in multiclass classification, Fig. 9 

illustrates the ROC curve. The Area Under the 

Curve (AUC) is derived by evaluating the 

relationship between the True Positive Rate 

(TPR) and False Positive Rate (FPR), 

providing insights into the model’s capability to 

distinguish between multiple classes. The 

results indicate that all classes achieve a 

remarkably high AUC score (≥ 0.97), 

demonstrating the model’s strong classification 
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performance even in the presence of class 

imbalance. 

 

 

Fig. 9. Receiver operating characteristic curve 

of test 1 

 
Based on the model obtained, Fig. 10 

displays the feature importance analysis using 

XGBoost to identify the most influential 

features in the classification. The results show 

that Systolic has the most significant 

contribution to the model prediction, followed 

by SI-TIBC (%), Urea, and Diastolic. These 

findings confirm that these factors play a 

significant role in determining the classification 

results by XGBoost. 

 

 

Fig. 10. Feature importance of the XGBoost 

model in test 1 

 
Evaluation of the Best XGBoost Model 

with Parameter ABC in a Balanced 

Dataset 
Testing was also carried out on a dataset 

with a balanced class distribution. Fig. 11 

presents the results of the model evaluation 

based on five testing scenarios carried out on 

data that has been balanced using SMOTE. Of 

the five testing scenarios, Scenario 3 shows the 

best performance with the highest accuracy, 

which is 94%. This scenario uses ABC 

parameters with the configuration n_bee = 30, 

max_iter = 30, and limit = 10. In terms of time 

efficiency, Scenario 1 has the fastest training 

time, which is 10 minutes, while Scenario 3 

requires the longest training time, which is 104 

minutes. The results of the model training time 

comparison are presented in more detail in Fig. 

12. 

 

 

Fig. 11. Accuracy comparison of testing 

schemes in the balanced dataset 

 

 

Fig. 12. Iteration time for each testing scheme 

in the balanced dataset 

 
Based on the model evaluation results, the 

accuracy obtained on the balanced dataset 

indicates that Test 3 is the best test scenario for 

the XGBoost model. The optimal XGBoost 

hyperparameters were successfully identified, 

as presented in Table 5. 

 
Table 5. Optimal Hyperparameters for 

XGBoost in Test 3 
Parameter Best Parameter Value 

n estimators (T) 332 

learning rate (𝜂) 0.8321564289807684 

reg lambda (λ) 46.07085476078473 

max depth 5 

min child weight 0 

gamma (γ) 0.0117333768716177 

Subsample (s) 0.1970623288575786 

colsample_bytree 0.9239102632618799 
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The performance evaluation of the best test 

scenario (Test 3) is illustrated in Fig. 13, which 

presents the learning curve based on Stratified 

K-Fold Cross-Validation. The graph compares 

the training score and cross-validation score as 

the training data increases, ensuring a balanced 

class distribution across folds for stable 

evaluation results. As the amount of data 

increases, the model's accuracy improves, 

achieving a training score of 0.97 and a cross-

validation score of 0.90. This result suggests 

strong generalization capabilities with no 

significant overfitting. 

 

 

Fig. 13. Learning curve of test 3 

 
The Operating Characteristic (ROC) Curve 

evaluation test was also carried out on the test 

with balanced data, as illustrated in Fig. 14, to 

evaluate the model's performance on balanced 

data with various testing schemes. The best test 

result (Test 3) shows that each class has a very 

high AUC value (≥ 0.99), indicating that the 

model performs very well in distinguishing the 

classes in the balanced data. 

 

 

Fig. 14. Receiver operating characteristic curve 

of test 3 

 

The balanced data test with the best test 

(Test 3) shows that Systolic is the feature with 

the greatest contribution to model prediction, as 

illustrated in Fig. 15, followed by SI-TIBC (%), 

Urea, and Diastolic. These findings indicate 

that these factors have a significant influence on 

determining the classification results produced 

by the XGBoost model for balanced data. 

 

 

Fig. 15. Feature importance of the xgboost 

model in test 3 

 

Performance Comparison on Balanced 

and Unbalanced Data 
Testing on both unbalanced and balanced 

datasets reveals a notable disparity in model 

effectiveness. The assessment outcomes 

demonstrate that the model attains greater 

accuracy when dealing with datasets where 

hemodialysis complication classes are more 

evenly distributed. From Table 6, training on a 

balanced dataset improves accuracy compared 

to an unbalanced dataset. Test 3 recorded the 

highest increase in accuracy, from 89% 

(unbalanced) to 94% (balanced), albeit with a 

longer training time. A similar thing happened 

in Test 1, where accuracy increased from 91% 

to 93%, with a little extra training time. A 

comprehensive evaluation of XGBoost 

performance, enhanced through the Artificial 

Bee Colony (ABC) algorithm, is displayed in 

Table 6. 

The evaluation of model performance on 

unbalanced and balanced data indicates that the 

Test 3 scenario, with Artificial Bee Colony 

parameters (n_bees = 30, max_iter = 30, and 

limit = 10), attains the highest accuracy, 

reaching 94%. This model is proven to be more 

optimal in detecting hemodialysis 

complications than other scenarios. The 

confusion matrix results for the Test 3 model 

are presented in Table 7 to provide a more 

detailed overview of its classification 

performance.  
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Table 6. Comparison of ABC-optimized 

XGBoost across test scenarios on unbalanced 

and balanced datasets 

Test 

Unbalanced 

Dataset 
Balanced Dataset 

Accura

cy (%) 

Time 

(minute

) 

Accuracy 

(%) 

Time 

(minu

te) 

1 91 6 93 10 

2 89 12 93 39 

3 89 52 94 104 

4 89 10 92 37 

 5 87 21 91 71 

 

Table 7. Confusion matrix of the best test 

scenario for ABC-Optimized XGBoost in 

classifying hemodialysis complications (test 3) 

Types of 

Complications 

Precision 

(%) 

Recall 

(%) 

F1-

score 

(%) 

No 

complication 
90 90 90 

Hipertensi 100 96 98 

Hipotensi 96 93 95 

Gastrointestinal 93 100 97 

CONCLUSION  

This study aims to develop a predictive 

model for medical complications in 

hemodialysis patients—including 

hypertension, hypotension, and gastrointestinal 

disorders—using the XGBoost algorithm 

optimized with the Artificial Bee Colony 

(ABC) method, while also addressing data 

imbalance using the Synthetic Minority Over-

sampling Technique (SMOTE). 

The results from five testing scenarios 

indicate that the application of the ABC method 

significantly contributed to finding the optimal 

parameter combinations for the XGBoost 

model. The best scenario (Test 3) achieved the 

highest accuracy of 94% on balanced data, an 

improvement from 89% on imbalanced data. 

The SMOTE technique proved effective in 

enhancing model performance by ensuring a 

more even distribution of data across classes, 

thereby making the model more reliable in 

identifying each type of complication. 

Although this study does not directly 

compare the ABC method with conventional 

optimization approaches such as Grid Search or 

Random Search, previous literature has 

highlighted limitations of those methods, 

particularly in terms of time efficiency and 

inefficiency in exploring large solution spaces. 

In contrast, the ABC method is adaptive and 

capable of navigating parameter spaces more 

flexibly and efficiently. This is evidenced by 

the model’s ability to achieve high accuracy (up 

to 94%) even when searching a complex 

parameter space, consisting of eight XGBoost 

hyperparameters. Thus, the ABC method has 

proven effective in addressing optimization 

challenges in predictive models with wide 

search spaces. 

This predictive model can serve as a 

valuable tool for medical practitioners by 

enabling early detection of potential 

complications in hemodialysis patients. Its 

integration into clinical decision-support 

systems may improve patient outcomes, reduce 

mortality risks, and contribute to better 

healthcare management for chronic kidney 

disease patients undergoing hemodialysis. 

Future research may explore additional 

machine learning techniques, real-time model 

deployment, and external validation to further 

refine predictive capabilities. 

 

 

REFERENCES 
 

[1]  N. Z. Aditama, H. Kusumajaya, and N. 

Fitri, "Faktor-faktor yang berhubungan 

dengan kualitas hidup pasien gagal ginjal 

kronis," vol. 6, no. 1, 2024. 

https://doi.org/10.33862/jnsr.v1i2.466 

[2] Tim Penulis Kementrian Kesehatan, 

"Laporan Nasional Riskesdas 2018." 

Badan Penelitian dan Pengembangan 

Kesehatan. [Online]. Available : 

 

https://repository.badankebijakan.kemke

s.go.id/id/eprint/3514/  

[3] L. ISROIN, Manajemen cairan pada pasien 

hemodialisis untuk meningkatka n 

kualitas hidup. Unmuh Ponorogo Press, 

2016. [Online]. Available: 

https://umpopress.umpo.ac.id/media/202

4-01-18/manajemen-cairan-pada-pasien-

hemodialisis-untuk-meningkatkan-

kualitas-hidup/mobile/index.html  

 

https://doi.org/10.33862/jnsr.v1i2.466
https://repository.badankebijakan.kemkes.go.id/id/eprint/3514/
https://repository.badankebijakan.kemkes.go.id/id/eprint/3514/
https://umpopress.umpo.ac.id/media/2024-01-18/manajemen-cairan-pada-pasien-hemodialisis-untuk-meningkatkan-kualitas-hidup/mobile/index.html
https://umpopress.umpo.ac.id/media/2024-01-18/manajemen-cairan-pada-pasien-hemodialisis-untuk-meningkatkan-kualitas-hidup/mobile/index.html
https://umpopress.umpo.ac.id/media/2024-01-18/manajemen-cairan-pada-pasien-hemodialisis-untuk-meningkatkan-kualitas-hidup/mobile/index.html
https://umpopress.umpo.ac.id/media/2024-01-18/manajemen-cairan-pada-pasien-hemodialisis-untuk-meningkatkan-kualitas-hidup/mobile/index.html


Rangga L. A., Trimono., Wahyu S. J., & Wan S. W. A., Hyperparameter optimization of ... 44 
 

 

 

[4]   Rizki Muliani, L. A. Fauziah, and 

Sumbara, "Komorbiditas dan Lama 

Menjalani Hemodialisis dengan Kualitas 

Hidup pada Klien yang Menjalani 

Hemodialisis," Window Health J. 

Kesehat., pp. 533-544, May 2022. 

https://doi.org/10.33096/woh.v5i02.24 

 

[5] T. Irr, "INDONESIAN RENAL 

REGISTRY 2020". [Online]. Available : 

https://www.indonesianrenalregistry.org/  

 

[6]   H. J. Murff, V. L. Patel, G. Hripcsak, and 

D. W. Bates, "Detecting adverse events 

for patient safety research: a review of 

current methodologies," J. Biomed. 

Inform., vol. 36, no. 1-2, pp. 131-143, 

Feb. 2003,  

https://doi.org/10.1016/j.jbi.2003.08.003 

 

[7]    S. Chaudhuri et al., "Artificial intelligence 

enabled applications in kidney disease," 

Semin. Dial., vol. 34, no. 1, pp. 5-16, Jan. 

2021,  

https://doi.org/10.1111/sdi.12915 

 

[8]    F. Ratantja Kusumajati, B. Rahmat, and 

A. Junaidi, "Implementation of Balancing 

Data Method using Smotetomek in 

Diabetes Classification using XGBoost," 

J. Ilm. Kursor, vol. 12, no. 4, pp. 201-212, 

Dec. 2024,  

https://doi.org/10.21107/kursor.v12i4.41

0 

 

[9]    F. A. Mohammad, A. M. Rizki, and A. N. 

Sihananto, "Peramalan Tingkat Inflasi di 

Indonesia menggunakan Artificial Bee 

Colony Dan Xgboost," J. Inform. Dan 

Tek. Elektro Terap., vol. 12, no. 3, Aug. 

2024,  

https://doi.org/10.23960/jitet.v12i3.4827 

 

[10] P. Septiana Rizky, R. Haiban Hirzi, and U. 

Hidayaturrohman, "Perbandingan 

Metode LightGBM dan XGBoost dalam 

Menangani Data dengan Kelas Tidak 

Seimbang," J Stat. J. Ilm. Teori Dan Apl. 

Stat., vol. 15, no. 2, pp. 228-236, Dec. 

2022,  

https://doi.org/10.36456/jstat.vol15.no2.a

5548 

 

[11] W.-H. Hsieh, C. C.-Y. Ku, H. P.-C. 

Hwang, M.-J. Tsai, and Z.-Z. Chen, 

"Model for Predicting Complications of 

Hemodialysis Patients Using Data From 

 

the Internet of Medical Things and 

Electronic Medical Records," IEEE J. 

Transl. Eng. Health Med., vol. 11, pp. 

375-383, 2023,  

https://doi.org/10.1109/JTEHM.2023.32

34207 

[12] M. Othman, A. M. Elbasha, Y. S. Naga, 

and N. D. Moussa, "Early prediction of 

hemodialysis complications employing 

ensemble techniques," Biomed. Eng. 

OnLine, vol. 21, no. 1, p. 74, Oct. 2022, 

https://doi.org/10.1186/s12938-022-

01044-0 

 

[13] J. Dong et al., "Machine learning-based 

intradialytic hypotension prediction of 

patients undergoing hemodialysis: A 

multicenter retrospective study," Comput. 

Methods Programs Biomed., vol. 240, p. 

107698, Oct. 2023,  

https://doi.org/10.1016/j.cmpb.2023.107

698 

 

[14] K. G. Pebriantari and I. P. Astuti Dewi, 

"Hubungan Komplikasi Intra 

Hemodialisis dengan Kualitas Hidup 

pada Pasien Chronic Kidney Disease 

(Ckd) Stage V yang menjalani 

Hemodialisis di Ruang Hemodialisa 

BRSU Tabanan Tahun 2017," J. Ris. 

Kesehat. Nas., vol. 2, no. 1, pp. 9-17, Apr. 

2018, 

https://doi.org/10.37294/jrkn.v2i1.95 

 

[15] N. A. Pramudhyta and M. S. Rohman, 

"Perbandingan Optimasi Metode Grid 

Search dan Random Search dalam 

Algoritma XGBoost untuk Klasifikasi 

Stunting," J. MEDIA Inform. 

BUDIDARMA, vol. 8, no. 1, p. 19, Jan. 

2024, 

https://doi.org/10.30865/mib.v8i1.6965 

 

[16] R. Basuki, Z. J. H. Tarigan, H. Siagian, L. 

S. Limanta, D. Setiawan, and J. Mochtar, 

"The effects of perceived ease of use, 

usefulness, enjoyment and intention to 

use online platforms on behavioral 

intention in online movie watching during 

the pandemic era," Int. J. Data Netw. Sci., 

vol. 6, no. 1, pp. 253-262, 2022,  

https://doi.org/10.5267/j.ijdns.2021.9.00

3 

 

[17] P. A. Riyantoko, T. M. Fahrudin, K. M. 

Hindrayani, and M. Idhom, "Exploratory 

 

https://doi.org/10.33096/woh.v5i02.24
https://www.indonesianrenalregistry.org/
https://doi.org/10.1016/j.jbi.2003.08.003
https://doi.org/10.1111/sdi.12915
https://doi.org/10.21107/kursor.v12i4.410
https://doi.org/10.21107/kursor.v12i4.410
https://doi.org/10.23960/jitet.v12i3.4827
https://doi.org/10.36456/jstat.vol15.no2.a5548
https://doi.org/10.36456/jstat.vol15.no2.a5548
https://doi.org/10.1109/JTEHM.2023.3234207
https://doi.org/10.1109/JTEHM.2023.3234207
https://doi.org/10.1186/s12938-022-01044-0
https://doi.org/10.1186/s12938-022-01044-0
https://doi.org/10.1016/j.cmpb.2023.107698
https://doi.org/10.1016/j.cmpb.2023.107698
https://doi.org/10.37294/jrkn.v2i1.95
https://doi.org/10.30865/mib.v8i1.6965
https://doi.org/10.5267/j.ijdns.2021.9.003
https://doi.org/10.5267/j.ijdns.2021.9.003


45 Jurnal Ilmiah KURSOR, Vol. 13, No. 1, Juli 2025, hal 32 - 45 

 

 

 

Data Analysis and Machine Learning 

Algorithms to Classifying Stroke 

Disease," IJCONSIST J., vol. 2, no. 02, 

pp. 77-82, Jun. 2021, 

https://doi.org/10.33005/ijconsist.v2i02.4

9 

[18] A. T. Damaliana, T. Trimono, and D. A. 

Prasetya, "Ensemble Tree untuk 

Memprediksi Level Resiko Maternal 

Mortality di Bangladesh," Pros. Semin. 

Nas. SAINS DATA, vol. 2, no. 1, pp. 24-

29, Nov. 2022,  

https://doi.org/10.33005/senada.v2i1.36 

 

[19] R. Luo, L. Guo, X. Li, J. Tuo, C. Lei, and 

Y. Zhou, "An eXtreme Gradient Boosting 

Algorithm Combining Artificial Bee 

Colony Parameters Optimized Technique 

for Single Sand Body Identification," 

IEEE Access, vol. 9, pp. 156894-156906, 

2021,  

https://doi.org/10.1109/ACCESS.2021.3

129830 

 

[20] A. T. Damaliana, A. Muhaimin, and D. A. 

Prasetya, "Forecasting the Occupancy 

Rate of Star Hotels In Bali using the 

Xgboost and SVR Methods". Vol. 12, 

No.1, 2024. 

https://doi.org/10.26714/jsunimus.12.1.2

024.24-33  

 

[21] A. Muhaimin, W. Wibowo, and P. A. 

Riyantoko, "Multi-label Classification 

Using Vector Generalized Additive 

Model via Cross-Validation," J. Inf. 

Commun. Technol., vol. 22, 2023,  

https://doi.org/10.32890/jict2023.22.4.5 

 

[22] A. Z. Nur, H. Suyono, and M. Aswin, 

"Application of Hybrid GA-PSO to 

Improve the Performance of Decision 

Tree C5.0," J. Ilm. Kursor, vol. 10, no. 4, 

Dec. 2020, 

https://doi.org/10.21107/kursor.v10i4.24

8 

 

[23] M. Nasrudin, "MRI-Based Brain Tumor 

Instance Segmentation Using Mask R-

CNN," Comput. Eng. Appl. J., vol. 13, no. 

03, pp. 1-9, Oct. 2024,  

https://doi.org/10.18495/comengapp.v13i

03.490 

 

[24] F. N. Riyana Putri, R. R. Isnanto, and A. 

Sugiharto, "Skin Rash Classification 

System using Modified Densenet201 

Through Random Search for 

Hyperparameter Tuning," J. Ilm. Kursor, 

vol. 12, no. 4, pp. 179-190, Dec. 2024, 

https://doi.org/10.21107/kursor.v12i4.41

8 

 

 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  

https://doi.org/10.33005/ijconsist.v2i02.49
https://doi.org/10.33005/ijconsist.v2i02.49
https://doi.org/10.33005/senada.v2i1.36
https://doi.org/10.1109/ACCESS.2021.3129830
https://doi.org/10.1109/ACCESS.2021.3129830
https://doi.org/10.26714/jsunimus.12.1.2024.24-33
https://doi.org/10.26714/jsunimus.12.1.2024.24-33
https://doi.org/10.32890/jict2023.22.4.5
https://doi.org/10.21107/kursor.v10i4.248
https://doi.org/10.21107/kursor.v10i4.248
https://doi.org/10.18495/comengapp.v13i03.490
https://doi.org/10.18495/comengapp.v13i03.490
https://doi.org/10.21107/kursor.v12i4.418
https://doi.org/10.21107/kursor.v12i4.418

	Untitled

