

Vol. 7, No. 1, January 2013 ISSN 0216 – 0544

29

SEMANTIC WEB SERVICE COMPOSITIONFOR
ERP BUSINESS PROCESS

aAnang Kunaefi, bRiyanarto Sarno, cDwi Sunaryono, dImam Mukhlash

a,b,c,d Institut Teknologi Sepuluh Nopember Surabaya
E-Mail: an_kunaefi@yahoo.co.id

Abstrak

Saat ini, ERP (Enterprise Resource Planning) bergerak menuju layanan SaaS
(Software as a Service) dan Multi-Tenancy, di mana aplikasi ERP melayani beberapa
penyewa dengan proses bisnis yang berbeda dalam lingkungan berbasisweb service.
Pada kasus Provider ERP, sangat penting untuk mencapai fleksibilitas proses bisnis
penyewa sebagaimana didefinisikan dalam tingkatkematangan SaaS level 4, yaitu
Configurable dan Scalable. Dengan cara ini, Penyedia dapat melayani proses bisnis
penyewa secara dinamis.Penelitian ini menggunakan pendekatan komposisi semantik
web service untuk menyelesaikan masalah fleksibilitas dalamproses bisnis. Ontologi
digunakan sebagai representasi pengetahuan semantik pada domainpengetahuan ERP
untuk proses pencarian dan komposisi web service. Selanjutnya, algoritma kemiripan
berbasis fitur (Feature-based Similarity) dan kemiripan berbasis struktur (Structure-
based Similarity)digunakan untuk melakukan pencarian kemiripan antara permintaan
proses bisnis dariPenyewa dan proses bisnis Penyedia layanan ERP di Registry. Hasil
penelitian menunjukkan bahwa metode yang diusulkan mampu memenuhi permintaan
proses bisnis penyewa, baik workflow sederhana maupun workflow yang lebih
kompleks dengan hasil yang baik.

Kata kunci: Web Servis Semantik, Komposisi Semantik, Proses Bisnis ERP, Feature-
based Similarity, Structure-based Similarity.

Abstract

Nowadays, ERP (Enterprise Resource Planning) moves toward SaaS (Software as a
Service) and Multi-Tenancy, where an ERP application serves multiple tenants with
different business processes in a web-service based environment. In the case of ERP
provider, it is very important to achieve business process flexibility among tenants as
defined in SaaS Maturity Level 4, that is Configurable and Scalable. InThis way,
Provider can serve tenant’s business processes request dynamically.This research
usingsemantic Web Service Composition approach to address business process
flexibility problem. Ontology is used as a semantic representation of ERP domain
knowledge for web service discovery and composition. Afterwards, the combination of
Feature-based Similarity and Structural-based Similarity algorithms are used to do
the discovery and matchmaking process between tenant’s business process request
and business process available in the ERP provider’s registry. The result showsthat
the proposed method in this paper is able to fulfil tenant’s business process request
both for simple workflow and complex workflow with a good result.

Keywords: Semantic Web Service, Semantic Composition, ERP Business Process,
Feature-based Similarity, Structure-based Similarity.

30 KURSOR Journal Vol. 7, No. 1, January 2013, page. 29-38

INTRODUCTION

Nowadays, ERP moves toward SaaS (Software
as a Service) and Multi-Tenancy, where an ERP
application serves multiple tenants with different
business processes.In order to achieve
flexibility, SaaSERP Provider needs a method to
compose or configure business process at
runtime.This requirement was defined by
Qihongas SaaS Maturity Level 4 [1].

In this study, we use semantic web service
composition to address business process
flexibility problem. W3C defined Web Service
Composition as a sequence of atomic services
where one web service invoke another web
service in order to make a new functional
composite web service for its user.

In the previous studies about web service
composition, some researchers used different
methods and approaches to do the composition.
Here are to name a few, Sirin used artificial
intelligence approach to make service
composition [2]. McIlraith used logical
programming to automatically compose web
services [3], and Talantikite used ontology
annotation to compose web service to meet
user’s query [4]. Although many researchers
have been addressed service composition
problem with different techniques, composing a
service from existing service is still very
difficult [5]. This indicates that the world of
service composition still in search for the best
solution up until now.

Many studies used ontology to represent the
metadata of the service, as ontology has been
standardized by W3C [6,7,8]. However, for
ontology approach alone, there are different
methods used by researchers to do service
composition. These methods are an extension of
ontology specification designed for web service,
for example, DAML as in [9,10], OWL-S as in
[11,12,13], and WSMO as in [14,15].

Most researchers checked only the inputs and
outputs of web services to make service
composition [4,16,17,18]. By using this
approach, the result of the composition can not
be controlled by the user. Composition result
can be very lengthy and inefficient, involving
web services which should not be included.

In our study, we check the inputs and outputs
(feature-based similarity), as well as the
workflow structure (structure-based similarity)
of the tenant’s request. We believe, combining
these two similarity checking will lead to a
better composition result.

In a usual scenario, user or tenant of ERP
Provider will perform a query to discover
whether their service request is available or not
in ERP Provider’s registry before transaction
take place.

In our scenario, however, tenant will perform
a business process request using ontology
annotation. Then,ERP Provider will perform
similarity computation to searchfor similar
composite service in the Registry. If, for
example, the tenant’s request cannot be satisfied
with existing composite service, ERP Provider
will try to compose a new composite service
based on a composite service that has the closest
match with tenant’s request.

In order to accomplish this task, we explain
our method in the next section.

DOMAIN ONTOLOGY

In heterogeneous environment, it is very
important to use domain ontology as a reference
for ontology processing.
Domain ontology will help to solve
heterogeneity problem in the case of concept
misperception [19]. For example, tenant might
use term “Order” to express purchase order
process. On the other hand, in Provider’s side,
terms “Order” might have at least two meanings,
either “Purchase Order” or “Production Order”.
Purchase Order and Production Order are
different in the perspective of Provider’s
Ontology, because they have their own
characteristics. This condition is described in
Figure. 1.

Figure 1. Example of ERP Domain Ontology.

Logistics

Materials
Management

Production
Planning

Inventory Production
Order

Purchase
Order

Kunaefi et al, Semantic Web Service Composition For...31

Figure 2. ProcessModel Representation in

OWL-S.

Figure 3. Graph Structure Representation

Using these characteristics, the system is able
to determine which class in the ontology that has
similar meaning with user or tenant’s request,
whether it is “Purchase Order” or “Production
Order”.

We adopted layered ontology approach
explain in [20], by separating ontology for ERP
domain knowledge (Domain Ontology) and
ontology for ERP application (Application
Ontology). The benefit of this separation is to
achieve comprehensive understanding about the
meaning, purpose and usage of each concept in
the ontology [20].

The ontology was made by following
practical guide in [21] using OWL 1.2
specification with Protege 4.2.

SEMANTIC SIMILARITY

In this research, we employ two kinds of web
service semantic similarity algorithms, which
are, Feature-based Similarity and Structure-
based Similarity.

Feature-based Similarity

In the case of web service, Feature is defined as
Input, Output, Precondition and Effect (IOPE).
Although the technique might different, many
researchers used IOPE matchmaking as a basis
to perform service discovery and service
composition [16,17].

Therefore, in this study, we adopt Feature-
based Similarity to semantically discover
whether two services can be composed or not. In
Feature-based Similarity, the more features in

common between the two concepts, the greater
the similarity value. To calculate the Feature-
based Similarity, we used the formula from
Ganjisaffar [22] as shown in Equation (1),

)'()()'()(
)'()(2

)',(
cFcFcFcF

cFcF
cc (1)

Where,
F (c) : Features of Concept c
F (c’) : Features of Concept c’

Structure-Based Similarity

In the case of ERP, each tenant can have many
different business processes. Each business
process is implemented using a composite
service contain a process workflow. In OWL-S,
this process workflow called as Process Model
[23]. In OWL-S, the Process Model is
represented in XML as described in Figure. 2.

In Figure.2, Process Model describes
sequence of two web services i.e.,
createPurchaseRequest and
createPurchaseOrder. This sequence can also
be represented as a graph structure as described
in Figure. 3.

The purpose of using Structure-based
similarity is to calculate the similarity of
structure and sequence of the workflow process
[24,25]. Graph-edit Distance Algorithm is used
to compute the distance between the two graphs.
Graph-edit Distance is defined as the minimum
number of graph-edit operations necessary for
the two graphs to be exactly the same. The
definition of graph-edit operations include: node
deletion and insertion; node substitution; edge
deletion and insertion.

The detail process about how to compute
Graph-edit Distance Algorithm has been
discussed in [24].

WEB SERVICE COMPOSITION

In a service composition scenario using Input,
Output, Precondition and Effect (IOPE), two
services S1 and S2 can be composed, if the
output of S1 is used as an input of S2 [26].
Furthermore, two services are compatible and
composable, if the Effect value of S1 is equal
or similar to Precondition value of S2.

In addition, the structure of the composition
request is matched with the structure of
composite service available in the Registry. The
objective is, a new composition can be made

OWL-S
Profile

Grounding

ProcessModel
<sequence>

<createPurchaseRequest>

<createPurchaseOrder>

</sequence>

32 KURSOR Journal Vol. 7, No. 1, January 2013, page. 29-38

from existing composite service with minor
addition.

Figure 4. System Architecture.

In our method as described in Figure 4,
tenant’s business process request is handled by
Service Composer. Service Composer utilizes
Feature-based Similarity that is combined with
Structure-based Similarity for matchmaking and
composing workflow.For every similarity
checking we use Domain Ontology to check the
relatedness of every term of the service feature
involved. Base on the result of matchmaking
process, Service Composer return several
Composition Plan that might be found to the
Tenant.

Composing a Simple Workflow

Say, tenant define a request R as follows.
R={(input,purchaseOrderID,http://erp201
1/domain.owl#purchaseOrderID),

(output,stockStatus,http://erp2011/doma
in.owl#stockStatus),

(precondition,itemOrdered,http://erp201
1/domain.owl#itemOrdered),
(effect,purchaseInvoiceCreated,
http://erp2011/domain.owl#purchaseInvoi
ced),
(process,receiving,http://erp2011/recei
ving.owl}

Extracting Feature
Common web service features consist of Input,
Output, Precondition and Effect (IOPE). For
every feature in the above definition, there are
two values separated with comma. The first
value represent the name of the feature, the
second value represent the annotation of the
feature referencing to some ontology.

For example, input feature has value
purchaseOrderID and
http://erp2011/domain.owl#purchaseOrder
ID. The first value is the name of the input, and
the second is the annotation ontology. In other
words, tenant is searching for web service,
where the input name is similar to

purchaseOrderID with characteristics similar
to what is described in
http://erp2011/domain.owl#purchaseOrder
ID.

From the domain ontology specification
domain.owl#purchaseOrderID, we get the
following description about input
purchaseOrderID.

F(purchaseOrderID) =

{(hasInputName,purchaseOrderID),
(hasInputType,String)}

Using the same steps as input feature, we
get all features of request R as follows.

F(R) = {(hasInputName,purchaseOrderID),

(hasInputType,String),
(hasOutputName,stockStatus),
(hasOutputType,String),
(hasPrecondition,itemOrdered),
(hasEffect,purchaseInvoiceCreated
)}

After getting the features, the next important
task is getting the structure of the request.
Again, we will use ontology description that is
annotated by tenant in the request. The system
read and extract Process Model of composite
service in ontology file
http://erp2011/receiving.owl. Figure 5
described an example of receiving ontology as a
part of Application Ontology.

In the ontology, there are four classes, and
five object properties. Receiving class has three
processes, namely, createReceiving,
checkQuantity and createPurchaseInvoice.
Receiving class has hasInitialProcess
property on createReceiving class, indicating
that createReceiving class is the first process
that should be executed in the workflow. On the
other hand, it also has hasLastProcess property
pointing on createPurchaseInvoice,
indicating that createPurchaseInvoice is the
last process of the workflow. It also relates with
checkQuantity using hasProcess property.

Figure 5. Example of Receiving.owl.

Receivingg

checkQuantity

createReceiving

hasInitial
Process

createPurchase
Invoice

hasProcess

hasLastProcess

hasPreviousP
rocess

hasNextProcess

Kunaefi et al, Semantic Web Service Composition For...33

The position of checkQuantity process in
the workflow can be determined with two
properties, namely hasPreviousProcess and
hasNextProcess. hasPreviousProcess means
that checkQuantity can be executed after
createReceiving is executed. On the contrary,
hasNextProcess means that after executing
checkQuantity, the system must execute
createPurchaseInvoice.

In the bigger workflow involving more
processes, there might be more than one
hasProcess property relating with several
classes. Each class should define its
hasPreviousProcess and hasNextProcess
property clearly. The structure graph as a result
of extraction process of ontology in Figure 5 is
shown in Figure 6.

Figure 6. Graph Structure Representation of
Composition Request.

Service Discovery
The next important task after getting request
definition is service matchmaking process or
service discovery [8, 18,27]. In the
matchmaking process, the system will search
The Registry for composite service which has a
similar graph structure with tenant’s request
using similarity computation.

Say, for example, there is one composite
service in the Registry as described in Figure 7.
Similarity computation between graph structure
in Figure 7 and Figure 8 begins with the
similarity checking of nodes and edges. Dijkman
in [24] used syntactic similarity on node labels
using the Edit-Distance Algorithm.

In this study, we use Feature-based Similarity
as seen in Equation (1) to compute similarity
between nodes. This is because each node in the
graph represents atomic web service, and each
of them has features.

According to the result in Table 1, there are
two similar nodes (indicated by the similarity
value above threshold; threshold = 0.7) as
follows.

1. createReceiving() similar with
provideReceiving()

2. checkQuantity() similar with
checkQuantityDifference()

Figure 7. Example of Existing Composite

Service.

(a)

(b)

Figure 8. (a) Incomplete Composition Result;
(b) Final Composition Result.

Thus, according to Graph-Edit Distance
Algorithm, we got the following computation.

The result of Structure-based Similarity score
is equal to 0.765 (above threshold). The result
indicates the two graphs are similar. However, if
we checked on the IOPE parameter, the output
part of the found composite service still did not
match with tenant’s output request. This
condition is described in Figure 8(a).

In order to fulfill the request, there should be
another service to close the gap. Therefore, to
complementthe shortage,the algorithm will look
for anothe rappropriate service using Feature-
based Similarity where the target output is the
output request from tenants, and target input

Output
(Request) 2

Input
(Request) 1

checkQuantity()

createReceiving()

Output
(Request) 3 2

Input
 (Request)

createPurchaseInvoice()

1

checkQuantity()

createReceiving()

Output
(Request)

3 2
Input

 (Request)

createPurchase
Invoice()

1

checkQuantity
Difference()

provideReceiving()

Composite
Service

Output
(Request)

? 2
Input

 (Request)

1

checkQuantity
Difference()

provideReceiving()

Composite
Service

34 KURSOR Journal Vol. 7, No. 1, January 2013, page. 29-38

isthe outputof the found composite service. The
final resultof the service composition isshown in
Figure 8(b).

The result shown in Figure 8(b) might be one
possibility of composition plan. Each tenant’s

request can return several composition plans as a
result of similarity computation. Each
composition plan considered as a solution, if
the average similarity score is above the
threshold (threshold = 0.7).

Table 1. Feature-based Similarity Between Nodes.

No Node/Features

(Tenant)

Node/Features

(Provider)

Feature
Similarity

1 createReceiving()

{(hasInputType,String),(hasOut
putType,String),
(hasInputName,purchaseOrderID)
, (hasOutputName,receivingID),
(hasPrecondition,purchaseOrder
ed), (hasEffect,itemReceived)}

provideReceiving()

{(hasInputType,String),(hasOutp
utType,String),
(hasInputName,purchaseOrderID),
(hasOutputName,receivingID),
(hasPrecondition,purchaseOrdere
d),
(hasEffect,receivingCreated)}

0.93

2 checkQuantity()

{(hasInputType,String),
(hasOutputType,String),
(hasInputName,purchaseOrderID)
,
(hasOutputName,quantityDiffere
nce),
(hasPrecondition,itemReceived)
, (hasEffect,quantityChecked)}

checkQuantityDifference()

{(hasInputType,String),
(hasOutputType,String),
(hasInputName,purchaseOrderID),
(hasOutputName,quantityDifferen
ce),
(hasPrecondition,receivingCreat
ed), (hasEffect,qtyChecked)}

0.86

3 createPurchaseInvoice()

{(hasInputType,String),
(hasOutputType,String),
(hasInputName,purchaseOrderID)
, (hasOutputName,receivingID),
(hasPrecondition,quantityCheck
ed),
(hasEffect,purchaseInvoiceCrea
ted)}

0

Composing Complex Workflow

Example in the previous section shows only
simple workflow consist of simple sequence.
What if tenant, for example, request a more
complex workflow consists not only sequence,
but also conditional ifThenElse and parallel
splitJoin execution. Figure 9 shows an
example of a complex Order-to-Cash workflow
in ERP.

As can be seen in Figure 9, the workflow
begins when a customer order some products.
Sales staff invoke salesOrder service to create
sales order transaction. The process continue by
invoking checkStock service for each product
that is being ordered. After invoking checkStock
service, there will be two possibilities. The
product is in stock or out of stock. Therefore, the
process continue with parallel excecution. For
products that is in stock, the system will invoke

shipping service, and at the same time, for
products that is out of stock, the system will
invoke makeToOrder service. The next process
is to determine, whether the sales is having
return or not. If it is true, the process continue to
invoke salesReturn, salesReturnInvoice and
salesInvoice consecutively, otherwise it invokes
salesInvoice service. The process ends by
invoking cashbank service.

Unfortunately, to find a similar composite
service having similar workflow with the one
shown in Fig. 9 are very difficult. The system
will end up with no result because the similarity
score is low. However, the search will be much
easier if the target composition is simple
enough.

Kunaefi et al, Semantic Web Service Composition For...35

Figure 9. Complex Workflow.

Therefore, we developed our algorithm to
addressed this problem as follows.
(i) Get the workflow
(ii) Break the workflow into sequence

compositions
(iii) For each new sequence composition, do the

following
(iv) If new sequence composition found a match

composite service, use the composite
service,

(v) Otherwise, make a new composition from
atomic services in the Registry.

(vi) If all the sequences have been satisfied,
compose the sequence together, otherwise
back to step iii.

In our method, we break the structure into

several sequence compositions to get the
following benefits: (a) to make the searching
and composing process much more easier
because the target composition is simple; and (b)
to gain flexibility in the composition process
because new services can be added in the middle
of the structure.

As in Figure 9, the workflow request can be
break into 6 sequence composition as follows.

By breaking the workflow into sequences,
the composition process will be much easier and
flexible. For example, sequence Seq-4 in Table
2 as in Figure 10, might have a match with one
composite service in the Registry. Thus, the
composite service can be reusable.

Service composition for each sequence in
Table 2, follow the steps and guide in the
previous section for simple workflow. Each of
the sequence will have their own IOPE
definition to help the composition process.

For example, Seq-1, will have Input and
Precondition definition from salesOrder
service; and Output and Effect definition from
checkStock service.

After all sequences have been satisfied, the
next step will be combining all the sequences
with the control construct as define in the
workflow according to its structure.

Table 2. Breaking The Workflow.

Seq
Composition

Services Sequence

Seq-1 salesOrder – checkStock
Seq-2 makeToOrder
Seq-3 shipping
Seq-4 salesReturn – salesReturnInvoice –

salesInvoice
Seq-5 salesInvoice
Seq-6 Cashbank

Figure 10. Sequence Seq-4.

RESULT AND DISCUSSION

The method proposed is tested in a service-
based ERP application environment with 60 web
services. The result indicated that the algorithm
was able to compose web services that are
similar to tenant’s request specifications.

We use ROC (Receiver Operating
Characteristics) classifier to classify the result of
the composition discovery.

ROC pays attention on four possible
conditions in the query result, namely, correct
hit (True Positive/TP), correct rejection (True
Negative/TN), incorrect hit (False Positive/FP)
and incorrect rejection (False Negative/FN). The
value of each condition can be obtain by
manually observing the query result. For
example, TP is the number of relevant result,
while FP is not relevant. On the contrary, TN is
the number of correct unreturned result, while
FN is incorrect unreturned result.

Figure 11 describes ROC Curve, which is the
plot of True Positive Rate (TPR) against False
Positive Rate (FPR) of the result. TPR is the
proportion of the relevant result returned by the
system compare to all relevant result in the
datasets.

Output
(Request) 3 2

Input
 (Request)

createPurchaseInvoice()

1

checkQuantity()

createReceiving()

36 KURSOR Journal Vol. 7, No. 1, January 2013, page. 29-38

Figure 11. ROC Curve.

FPR is irrelevant result detected as irrelevant
compare to all irrelevant service in the dataset.
TPR and FPR can be determined by the equation
as shown in Equation (2) and E quation (3).

= (2)

 F = (3)

The ROC Curve demonstrates several things.

The closer the curve follows the left-hand
border (above diagonal line), the more accurate
the test. Additionally, the closer the curve comes
to the 45-degree diagonal (under diagonal line),
the less accurate the test. Based on curve in
Figure 11, it can be seen that the matchmaking
result for composite service is slightly better
than atomic service.

The accuracy of the algorithm can be
determined by formula as shown in Equation
(4).

= (4)

By observing the result, we got the accuracy

of this method is between 72% and 97%. The
accuracy of 97% can be reached if all features of
the request service were determined by tenant,
and there were services with similar features in
Provider’s Registry. On the contrary, the
accuracy of 72% was reached because tenant’s
determined only two out of four features, which
are input and output.

Figure 12. ROC Normal Curve.
Further analysis is to obtain the best

threshold value in order to get the maximum
accuracy. By adding more scenarios for 30
samples, we got normal distribution of the result
as shown in Figure 12. The best threshold value
should be in the intersection line between
positive and negative result.

The left curve indicating True Negative

result, and the right curve indicating True
Positive result. The black-vertical line indicates
the threshold value of 0.7.

Increasing the threshold value would result in
fewer False Positive result. From the figure
above, the point of curve intersection shows that
the threshold should be 0.76 to get the maximum
accuracy.

CONCLUSION AND FUTURE WORKS

In service-based application, there is a need,
where tenants are able to construct their own
business process according to their needs
dynamically and semantically. This will make a
new way for business to gain win-win solution
between service provider and tenants.

In this paper, we proposed a method to make
semantic composition using feature similarity
and structural similarity.

Based on the composition formed, it can be
concluded that the method used has been
successfully compose web service that is similar
to tenant’s specification.

REFERENCES

[1] Q. Shao, “Towards Intelligent and Effective
Multi-Tenancy SaaS”, Ph.D. Dissertation,
Arizona State University, Arizona, 2011.

[2] E.Sirin, B.Parsia, D.Wu, J.Hendler, and D.
Nau, “HTN Planning for Web Service
Composition Using SHOP2,” Web
Semantics: Science, Services and Agents on

Kunaefi et al, Semantic Web Service Composition For...37

the World Wide Web, vol. 1, pp.377-396.
2004.

[3] S.Narayanan and S.A. McIlraith,
“Simulation, Verification, and Automated
Composition of Web Services,” in
Proceedings of 11th International World
Wide Web Conference (WWW-11),
Honolulu, 2002.

[4] H.N.Talantikite, D. Aissani, and
N.Boujdlida, “Semantics Annotation for
Web Services Discovery and
Composition,” Computer Standards and
Interface, vol. 31, pp. 1108 – 1117, 2009.

[5] Q.Wang and P. Sheu, “Relational Service
Composition,” in Proceedings of
International Conference on Semantic
Computing (ICSC), Berkeley, 2009.

[6] A. Kunaefi and R. Sarno, “Ontology
Mapping for ERP Business Process
Variations,” in Proceedings of Seminar
Nasional Teknologi Informasi dan
Multimedia,Yogyakarta, 2013.

[7] A. Hijriani, R. Sarno, and R. Arinta,
“Ontologi untuk Permodelan Service Level
Agreement Web Service,” in Proceedings
of Seminar Nasional Teknologi Informasi
dan Komputasi, Bangkalan, 2012.

[8] Y. Anistyasari and R. Sarno, “Weighted
Ontology for Subject Search in Learning
Content Management System,” in
Proceedings of International Conference on
Electrical Engineering and Informatics,
Bandung, 2011.

[9] A. Ankolekar, M. Burstein, J.R. Hobbs, O.
Lassila, D. Martin, D. McDermott, S. A.
McIlraith, S. Narayanan, M. Paolucci, T.
Payne, and K. Sycara. “DAML-S: Web
Service Description for the Semantic Web,”
in The Semantic Web-ISWC 2002: Proc. 1st
International Semantic Web Conference,
Sardinia, 2002.

[10] A.S. Bilgin, and M.P. Singh, “A DAML-
Based Repository for QoS-Aware Semantic
Web Service Selection,” in Proceedings of
the IEEE International Conference on Web
Service Selection, Washington D.C, 2004.

[11] M. Klusch, B. Fries, and K. Sycara,
“Automated Semantic Web Service
Discovery with OWLS-MX,” in
Proceedings of the fifth international joint

conference on Autonomous agents and
multiagent systems, New York, 2006.

[12] G. Meditskos and N. Bassiliades,
“Structural and Role-oriented Web Service
Discovery with Taxonomies in OWL-S,”
IEEE Transaction on Knowledge and Data
Engineering, vol. 22, pp. 278-290, 2010.

[13] A. Kunaefi, R. Sarno, “Orchestration of
semantic web service using OWL-S for
variations of ERP business process,” in
Proceedings of 2012 International
Conference on Mathematics, Statistics and
its Applications (ICMSA), 2012

[14] J. Domingue, L. Cabral, F. Hakimpour, D.
Sell, and E. Motta, “IRS-III: A Platform
and Infrastructure for Creating WSMO-
based Semantic Web Services,” in
Proceedings of the Workshop on WSMO
Implementations (WIW’04), Frankfurt,
2004.

[15] D. Sell, F. Hakimpour, J. Domingue, E.
Motta, and R.C.S. Pacheco, “Interactive
Composition of WSMO-based Semantic
Web Services in IRS-III,” in Proceedings
of 1st AKT Workshop of Semantic Web
Services, Milton Keynes, 2004.

[16] P. Bartalos, and M. Bielikova, “Adapting
I/O Parameters of Web Services to Enhance
Composition,” in Proceedings of Fifth
International Conference on Next
Generation Web Services Practices,
Washington D.C, 2009.

[17] H. Wang, Z. Li and L. Fan, “An
Unabridged Method Concerning Capability
Matchmaking of Web Services,” in
Proceedings of the 2006 IEEE/WIC/ACM
International Conference on Web
Intelligence, Hongkong, 2006.

[18] R. Sarno, K. Ghozali, B.A. Nugroho, and
A.Hijriani, “Semantic Match Making using
Weighted Directed Acyclic Graph,” in
Proceedings of International Seminar on
Applied Technology, Science, and Arts,
Surabaya, 2011.

[19] A. Malucelli, D. Palzer, and E. Oliveira,
“Ontology-based Services to Help Solving
The Heterogeneity Problem in e-Commerce
Negotiations,” Electronic Commerce
Research and Applications, vol 5, pp. 29-
43. 2006.

38 KURSOR Journal Vol. 7, No. 1, January 2013, page. 29-38

[20] M. Ehrig, P. Haase, M. Hefke, and N.
Stojanovic, “Similarity for Ontologies – A
Comprehensive Framework,” in
Proceedings of 13thEuropean Conference
on Information Systems,Regensburg, 2005.

[21] M. Horridge, S. Jupp, G. Moulton, A.
Rector, and R. Stevens, “A Practical Guide
To Building OWL Ontologies Using
Protege 4 and CO-ODE Tools,” University
of Manchester, Tech Report, 2007.

[22] Y. Ganjisaffar, H. Abolhassani, M. Neshati,
and M. Jamali, “A Similarity Measure for
OWL-S Annotated Web Service, in
Proceedings of 2006 IEEE/WIC/ACM
International Conference on Web
Intelligence, Hongkong, 2006.

[23] D. Martin, M. Burstein, J. Hobbs, O.
Lassila, D. McDermott, S. McIlraith, S.
Narayanan, M. Paolucci, B. Parsia, T.
Payne, E. Sirin, N. Srinivasan, and K.
Sycara, “OWL-S: Semantic Markup for
Web Services,W3C Member Submission,”
2004.

[24] R. Dijkman, M. Dumas, B. Dongen, R.
Kaarik, and J. Mendling, “Similarity of
Business Process Models: Metrics and
Evaluation,” Journal of Informations
Systems, vol. 36, pp. 498-516, 2011.

[25] Y. Wang, W. Liu, and D.A. Bell, “A
Structure-based Similarity Spreading
Approach for Ontology Matching,” in
Proceedings of the 4th international
conference on Scalable Uncertainty
Management, Toulouse, 2010.

[26] R. Sarno, ”Orchestrasi Web Services untuk
Variasi Proses Bisnis ERP,” in Proceedings
of Seminar Nasional Sistem Informasi
Indonesia, Surabaya, 2012.

[27] Hermawan and R. Sarno, “Developing
Distributed System with Service Resource
Oriented Architecture,” TELKOMNIKA
International Journal, vol.10, pp. 389-399,
2012.

